viernes, 14 de agosto de 2009

CONCEPTO DE LIMITE.
Una función puede definirse mediante una expresión verbal, una tabla, una fórmula o una gráfica. En general trabajaremos con funciones expresadas mediante una fórmula o expresión analítica y su gráfica. Según la expresión analítica clasificamos las funciones de la siguiente forma:


ALGEBRAICAS: polinomicas
racionales
irracionales

TRANSCENDENTES: exponenciales
logaritmicas
trigonometrica



Una cosa, por encima de todo, debe quedar clara con estos ejemplos: una función es una regla cualquiera que hace corresponder números a ciertos otros números, no necesariamente una regla que pueda ser expresada mediante una fórmula algebraica ...; ni tampoco necesariamente una regla a la que sea posible encontrar una aplicación en la práctica. Más aún, la regla puede prescindir de algunos números y puede incluso no estar del todo claro a qué números se aplica la función... El conjunto de los números a los cuales se aplica una función recibe el nombre de dominio de la función...
La práctica corriente consiste en designar una función mediante una letra. Por razones obvias se emplea preferentemente la letra 'f ', lo cual hace que sigan en orden de preferencia las letras 'g' y 'h', pero en fin de cuentas puede servir cualquier letra (e incluso cualquier símbolo razonable) sin excluir la 'x' y la 'y', si bien estas letras suelen reservarse para designar números. Si f es la función, entonces el número que f asocia con {el número} x se designa por f (x); este símbolo se lee 'f de x' y se le da con frecuencia el nombre de valor de f en x...


Límites
[Entre todos los conceptos que se presentan en el cálculo infinitesimal, el de límite es, a no dudarlo, el más importante, y quizás el más difícil... lo que vamos a definir no es la palabra 'límite', sino la noción de función que tiende hacia un límite. (Spivak, 99)]
[el análisis matemático moderno utiliza un método especial, que fue elaborado en el transcurso de muchos siglos, y constituye ahora su instrumento básico. Nos referimos al método de los infinitésimos o, lo que en esencia es lo mismo, de los límites. (Aleksandrov, 1, 108)]
Definición provisional
[La función f tiende hacia el límite l cerca de a, si se puede hacer que f (x) esté tan cerca como queramos de l haciendo que x esté suficientemente cerca de a, pero siendo distinto de a... solamente hace falta que f (x) esté próximo a l cuando x está próximo a a pero es distinto de a. Sencillamente no nos interesa el valor de f (a) ni siquiera la cuestión de si f (a) está definido. (Spivak, 99)]

No hay comentarios:

Publicar un comentario en la entrada